Цитата: "Сумма внутренних углов плоского выпуклого n-угольника равна 180°(n-2)". Тогда имеем уравнение: {[180°(n-2)]:n}*5 - {[180°(n-2)]:n}*(n-5) = 270. Это уравнение приводится к квадратному: 2n²-21n+40=0, откуда n1=8, n2=2,5 (не удовлетворяет условию). Итак, ответ: число сторон искомого правильного многоугольника равно 8. Проверка: Один угол восьмиугольника равен 180*6/8 = 135°. Тогда сумма пяти углов равна 135*5=675°, а сумма трех оставшихся углов равна 135*3=405°. Разница равна 675°-405°=270°
Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее: Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды). Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см. АВ²=100-36=64⇒АВ=√64=8см. S осн.=АВ*ВС=6*8=48см² Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
Тогда имеем уравнение: {[180°(n-2)]:n}*5 - {[180°(n-2)]:n}*(n-5) = 270.
Это уравнение приводится к квадратному:
2n²-21n+40=0, откуда n1=8, n2=2,5 (не удовлетворяет условию).
Итак, ответ: число сторон искомого правильного многоугольника равно 8.
Проверка: Один угол восьмиугольника равен 180*6/8 = 135°. Тогда сумма пяти углов равна 135*5=675°, а сумма трех оставшихся углов равна 135*3=405°. Разница равна 675°-405°=270°