1.
По теореме косинусов найдём угол MON
MN² = OM² + ON² - 2*OM*ON*cos(∠MON)
12² = 20² + 20² - 2*20*20*cos(∠MON)
144 = 400 + 400 - 800*cos(∠MON)
656 = 800*cos(∠MON)
cos(∠MON) = 41/50
∠MON = arccos(41/50)
2.
Площaдь треугольника MON
S(ΔMON) = 1/2*OM*ON*sin(∠MON)
sin(∠MON) = √(1-cos²(∠MON)) = √(1 - 41²/50²) = √(2500 - 1681)/50 = √819 / 50 = 3√91/50
S(ΔMON) = 1/2*20*20*3√91/50 = 12√91
3.
Площадь кругового сектора MON
S(∪MON) = ON²*∠MON/2 = 20²/2*arccos(41/50) = 200*arccos(41/50)
4.
Площадь заштрихованной фигуры
S = S(∪MON) - S(ΔMON) = 200*arccos(41/50) - 12√91 ≈ 7.404
Объяснение:
Задача 1:
Так как сумма углов прилежащих к одной стороне равна 180 градусов, значит углы данные в задаче- противолежащие. Противолежащие углы у параллелограмма равны, следовательно:
A + C= 62 равно 2A=62
Пусть A=x, тогда
2x=62
x=31 градус = угол А и следовательно=уголу C (противолежащие углы парал. равны)
Сумма прилежащих к одной стороне углов равна 180 градусов, следовательно, угол B= 180-A=180-31=149 градусов
ответ: угол B=149 градусов
Задача 2:
Так как противолежащие углы параллелограмма равны, а сумма углов прилежащих к одной стороне равна 180, то можно составить уравнение
Пусть угол A - x. Тогда угол D=x+70
x+(x+70)=180
2x+70=180
2x=110
x= 55- градусов угол A
1) D=180 - A= 180-55=125 градусов
ответ: 125 градусов = угол D
Угол DBC= 180-120=60. Так как угля смежные, а угол DAC=60, так написано в условии. Если я правильно поняла. Вот угол DBC точно 60 должен быть
Объяснение: