На квадрате отмечены 9 точек: вершины, середины сторон и точка пересечения диагоналей. Можно ли раскрасить точки в два цвета так, чтобы ни на какой из 8 прямых не было точек одного цвета?(с решением)
При решении стереометрических задач, правильный рисунок - половина дела. На таком рисунке легко видно, что стереометрическая задача сводится к решению планиметрических задач. Рисунок и решения а) и б) смотрите во вложении. в) диагональ основания, полагаю, Вы и сами видите, равна диаметру описанной окружности, или равна двум её радиусам. Радиус найден в б). Думаю Вам самой не сложно найти диагональ. г) Площадь равна AC*FO/2 = b^2*sin(альфа)*cos(альфа). д) Поскольку пирамида правильная, то в основании лежит квадрат. Диагональ квадрата Вы нашли. Если сторону основания обозначить Х, то по теореме Пифагора АС^2 = X^2 + X^2 = 2X^2. Попробуйте сами её найти. Для проверки сторона основания =b*cos(альфа)*√2
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2) итого
имеем для данного многоульника n(n-3)/2=35 n(n-3)=70 - не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон ответ: 10