ол казир келеди 9 жарымда мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати
Объяснение:
кек алу керек кой 50 мыңға жуық адам қатысты мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен
неге басылмай жатыр деп балаларда жиі кездеседі деп аталады және ол казир келеди 9 жарымда мен екі күн бойы жотеледи мен Бахтыбай Іңкармын тәти мен айтсам болама
4 и 4
Объяснение:
По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4 (ед. длины)