Круг с центром О Хорда АВ=64, хорда СД=48, АВ||CД Опустим из О перпендикуляр ОН на СД, он же перпендикулярен АВ и пересекает АВ в точке Е. ЕН=8 - расстояние между хордами: ОН=ОЕ+ЕН=ОЕ+8 ΔОАВ - равнобедренный (ОА=ОВ - радиусы), тогда ОЕ - высота, медиана (АЕ=ЕВ=32) и биссектриса: ОА²=АЕ²+ОЕ²=1024+ОЕ² аналогично ΔОСД - равнобедренный (ОС=ОД - радиусы), тогда ОН - высота, медиана (СН=НД=24) и биссектриса: ОС²=СН²+ОН²=576+(ОЕ+8)²=576+ОЕ²+16ОЕ+64=ОЕ²+16ОЕ+640 Т.к. ОА=ОС, то 1024+ОЕ²=ОЕ²+16ОЕ+640 16ОЕ=384 ОЕ=24 Значит радиус ОА=√1024+576=1600=40 Диаметр круга равен 2ОА=2*40=80
Так как угол К=углу N , то заданный треугольник сам равнобедренный. В равнобедренном треугольнике высота является также и медианой, опущенной из вершины к основанию и биссектрисой. т.е. высота делит треугольник на два одинаковых треугольника. А так как точка D будет лежать на медиане и это сторона, принадлежащей сразу 2 одинаковым треугольникам, то где бы вы не отметили точку D на медиане, треугольник KDN ,будет состоять из двух маленьких треугольников, равных между собой. Соответственно углы при основаниях равны = треугольник равнобедренный. Можно еще по 2 сторонам и углу. Одна сторона общая...медиана... а 2 - основание пополам. и угол 90° у высоты = равенство треугольников = углов=равнобедренный
Хорда АВ=64, хорда СД=48, АВ||CД
Опустим из О перпендикуляр ОН на СД, он же перпендикулярен АВ и пересекает АВ в точке Е. ЕН=8 - расстояние между хордами:
ОН=ОЕ+ЕН=ОЕ+8
ΔОАВ - равнобедренный (ОА=ОВ - радиусы), тогда ОЕ - высота, медиана (АЕ=ЕВ=32) и биссектриса:
ОА²=АЕ²+ОЕ²=1024+ОЕ²
аналогично ΔОСД - равнобедренный (ОС=ОД - радиусы), тогда ОН - высота, медиана (СН=НД=24) и биссектриса:
ОС²=СН²+ОН²=576+(ОЕ+8)²=576+ОЕ²+16ОЕ+64=ОЕ²+16ОЕ+640
Т.к. ОА=ОС, то 1024+ОЕ²=ОЕ²+16ОЕ+640
16ОЕ=384
ОЕ=24
Значит радиус ОА=√1024+576=1600=40
Диаметр круга равен 2ОА=2*40=80