Соединим точки Е и С. Треугольник ЕСА - равнобедренный, так как АС=АЕ (это дано).
Углы при основании ЕС равны между собой, а угол А равен 180° -(В+С) = 116°. Тогда углы АЕС и ЕСА равны (180°-116°):2=32°. Значит угол ЕFA (F- это точка пересечения биссектрисы AD и отрезка ЕС) = 180°-(AEF+EAF) = 180°-(32°+58°)=90°. (угол EAF = 1/2 угла А, т.к. AD - биссектриса. Угол AEF = 32°, как угол при основании ЕС равнобедренного тр-ка ЕАС). Итак, при точке пересечения биссектрисы AD и отрезка ЕС все углы прямые!
В равнобедренном треугольнике ЕСА биссектриса AF (отрезок AD) является и медианой и высотой (по свойствам равнобедренного тр-ка) и EF=FC. С другой стороны, по признакам равнобедренности - если EF=FC, то тр-ник EDC, в котором FD является и медианой и высотой, равнобедренный. То есть ED=DC.Углы при основании тр-ка EDC равны угол С - угол ECA = 41°-32° = 9°. Тогда на стороне АB имеем углы АEF,DEF и BED, в сумме равные 180°.
из них нам неизвестен только угол BED, который равен 180°-(32°+9°) = 139°.
Тогда искомый угол BDE в тр-ке BDE равен 180°-(23°+139°) = 18°.
ответ: угол BDE = 18°
S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
Получаем: S(AMK)=1/2S( BCM) ; S(BPK)= 1/6S(BCM) ; из этого следует, что BCM=2AMK=6BPK.
2AMK=6BPK ; AMK=3BPK.
ответ: 3:1