"стороны треугольника относятся как 3:7:8 найдите неизвестные подобном ему стороны треугольника сумма меньшей и средней по размеру сторон которого равна 30 см"
Дано. сторони трикутника відносяться як 3:7:8. знайдіть невідомі подібному йому сторони трикутника сума меншої та середньої за розміром сторін якого дорівнює 30 см.
Из условия очевидно, что точка L, лежит не на боковой стороне трапеции, а на основании трапеции... т.к. AD--боковая сторона, то АВ и CD -- основания, CL || AB || CD и получилось, что CL||CD и у этих прямых есть общая точка С ((они пересекаются))) итак, AD --основание... AL=LD=BC, т.к. в параллелограмме противоположные стороны равны... из известной площади трапеции можно найти высоту... S = (BC+AD)*h/2 = 90 (BC+AD)*h = 180 h = 180 / (BC+AL+LD) = 180 / (3*BC) = 60 / BC S(ABCL) = h*BC = 60*BC/BC = 60 можно и иначе порассуждать: диагональ параллелограмма АС разбивает параллелограмм на 2 равных треугольника -- S(ABC)=S(ACL) а медиана CL разбивает треугольник АСD на 2 РАВНОВЕЛИКИХ (но НЕ равных---т.е. равных по площади))) треугольника S(ACL)=S(CLD) получили, что вся трапеция разбивается на 3 равных по площади треугольника))) а площадь параллелограмма = двум площадям таких треугольников... 90*2/3 = 30*2 = 60
ответ: 9 см, 21 см, 24 см.
Объяснение:
"стороны треугольника относятся как 3:7:8 найдите неизвестные подобном ему стороны треугольника сумма меньшей и средней по размеру сторон которого равна 30 см"
Дано. сторони трикутника відносяться як 3:7:8. знайдіть невідомі подібному йому сторони трикутника сума меншої та середньої за розміром сторін якого дорівнює 30 см.
Решение.
Пусть одна сторона равна 3х см.
Вторая равна 7х см.
Третья сторона равна 8х см.
3х+7х=30.
10х=30.
х=3.
1 сторона равна 3*3=9 см.
2 сторона равна 3*7=21 см.
3 сторона равна 3*8=24 см.