sin <F = √(100 - ((FE - 8)/2)^2)
Объяснение:
Проведем высоты KH и PT. Так как трапеция равнобокая, то углы при основании <KFE и <PEF равны. Значит, треугольники KFH и PET равны по гипотенузе и острому углу. Тогда FH = TE, и при этом HT = KP, поскольку KPTH - прямоугольник.
FH = TE, и FH + TE = FE - HT, поэтому FH = TE = (FE - HT)/2 = (FE - 8)/2
sin <F = KH/FK = KH/10
KH считаем по теореме Пифагора из треугольника FKH:
KH =√
sin <F = KH/FK = KH/10 = √(FK^2 - FH^2) = √(10^2 - ((FE - 8)/2)^2) =
=√(100 - ((FE - 8)/2)^2)
Объяснение: квадрат диагонали параллелепипеда равен сумме квадратов его измерений:
Д²=дл²+шир²+выс²=
Д²=7²+6²+10²=49+36+100=185;
Д=√185см
Если нужно найти диагонали граней параллелепипеда, тогда обозначим его вершины А В С Д В1 С1 Д1. Диагональ ВД делит грань АВСД на 2 равных прямоугольных треугольника, в которых стороны основания являются катетами а диагональ гипотенузой. Найдём диагональ ВД грани АВСД по теореме Пифагора: ВД²=АВ²+АД²=6²+7²=36+49=
=85; ВД=√85см. Такая же величина диагонали у грани А1В1С1Д1. Теперь найдём диагональ грани АА1ВВ1 также по теореме Пифагора:
АВ1²=АВ²+АА1²=6²+10²=36+100=136;
АВ1=√136=2√34см. Такая же величина диагонали у грани Д1ДС1С. Диагонали одной грани равны между собой.
Диагональ грани АА1ДД1=АД²+ДД1²=
=7²+10²=49+100=149; ДД1=√149см
Диагональ ДД1=√149см