1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Для решения этой задачи нужно вспомнить, что в треугольнике с проведёнными высотами есть множество пар равных углов. В частности, в треугольнике KGB KN⊥GB, GM⊥KB, углы между соответственно перпендикулярными прямыми равны, значит ∠KLM=∠GBК.
Даны высоты KN и GM и угол между ними α. Построим треугольник.
Построим угол АВС равный α. На стороне АВ построим окружности с радиусами AH и IJ, равными высоте KN. Проведём общую касательную к окружностям HJ. Имеем точку пересечения со стороной ВС, обозначим её К. Построим перпендикуляр KN к стороне АВ. Действительно, KN - наша высота, ведь она параллельна АН и IJ и перпендикулярна АВ и HJ.
Аналогично получаем точку G. Строить высоту GM уже не нужно, но если построить, то точка пересечения L высот KN и GM даст угол KLM, равный углу АВС, то есть α.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).