М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
idkjfsk
idkjfsk
13.04.2021 18:18 •  Геометрия

1 смежные стороны параллелограмма равны 64 см и 52см а один из его углов равен 150 градусов найдите площядь паралелограма
2
одна из диогоналей паралелограма является его высотой и равна 18 см найдите стороны паралелограма если его площядь равна 216 см квадратных

👇
Ответ:
Накрутка знания telеgram: @united brai nly (без пробелов)
4,8(26 оценок)
Ответ:
сич23
сич23
13.04.2021
Накрутка знания telеgram: @united brai nly (без пробелов)
4,5(18 оценок)
Открыть все ответы
Ответ:
milankagl
milankagl
13.04.2021

1. а) Если прямая параллельна оси Ох, то ордината ( у ) в любой точке на этой прямой одинакова и равна 3 => у = 3 ( рис. 1 )

б) Если прямая параллельна оси Оу, то абцисса ( х ) в любой точке на этой прямой одинакова и равна 2 => х = 2 ( рис. 2 )

2. Рисунок 3

3у + 1 = 0 => у = - 1/3 ( зел. прямая )

3х - у - 2 = 0 => у = 3х - 2 ( фиол. прямая )

Две прямые пересекаются в одной точке, координаты которой являются общими и для первой и для второй прямой. В этой точке абцисса и ордината двух прямых равны =>

3х - 2 = - 1/3

3х = 2 - 1/3

3х = 5/3

х = 5/9 ; у = - 1/3

Значит, координаты точки пересечения двух прямых - A( 5/9 ; - 1/3 )

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) параллельно прямой y = x+1.

По-первых, у = kx + b - линейная функция, где k - угловой коэффициент.

Во-вторых, есть формула, по которой можно составить искомое уравнение прямой, параллельной другой прямой:

у - у0 = k • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = x - 5/9

y + 1/3 = x - 5/9

y = x - 8/9

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) перпендикулярно прямой y = x+1.

у - у0 = ( - 1/k ) • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = - ( x - 5/9 )

y + 1/3 = - x + 5/9

y = - x + 2/9

3. Рисунок 4

y = x - 2 ( оранж. прямая )

x - 5y + 6 = 0 => y = ( x + 6 ) / 5 ( син. прямая )

Найдём координаты точки пересечения этих прямых:

х - 2 = ( х + 6 ) / 5

5х - 10 = х + 6

4х = 16

х = 4

у = х - 2 = 4 - 2 = 2

Значит, координаты точки пересечения двух

прямых - А( 4 ; 2 )

Диагональ параллелограмма проходит через точку А( 4 ; 2 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для первой диагонали

параллелограмма АС:

у = kx , A( 4 ; 2 )

k = y/x = 2/4 = 1/2 => y = x / 2

Точка О( 0 ; 0 ) - точка пересечения диагоналей параллелограмма. Диагонали параллелограмма точкой пересечения делятся пополам. Отложим отрезок ОС, равный отрезку АО => получаем точку С ( - 4 ; - 2 ). Противоположные стороны параллелограмма параллельны. Составим уравнение прямой, проходящей через точку С( - 4 ; - 2 ) параллельно прямой y = ( х + 6 ) / 5

у - у0 = k • ( x - x0 )

y - ( - 2 ) = ( 1/5 ) • ( x - ( - 4 ) )

y + 2 = ( 1/5 ) • ( x + 4 )

y = ( x/5 ) + ( 4/5 ) - 2

y = ( x/5 ) - ( 6/5 )

y = ( x - 6 ) / 5 ( фиол. прямая )

Составим уравнение прямой, проходящей через точку C( - 4 ; - 2 ) параллельно прямой y = x - 2.

у - у0 = k • ( x - x0 )

у - ( - 2 ) = х - ( - 4 )

у + 2 = х + 4

у = х + 2 ( зел. прямая )

Найдём координаты точки пересечения прямых у = ( х + 6 ) / 5 и у = х + 2:

х + 2 = ( х + 6 ) / 5

5х + 10 = х + 6

4х = - 4

х = - 1

у = х + 2 = - 1 + 2 = 1

Значит, координаты точки пересечения двух

прямых - В( - 1 ; 1 )

Диагональ параллелограмма проходит через точку В( - 1 ; 1 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для второй диагонали

параллелограмма ВD:

у = kx ; B( - 1 ; 1 )

k = y/x = 1/-1 = - 1

y = - x

4. Рисунок 5

x + y = 4 => y = 4 - x ( оранж. прямая )

x - y = 0 => y = x ( фиол. прямая )

Найдём координаты точки пересечения этих прямых:

4 - x = x

2x = 4

x = 2

y = 2

Значит, координаты точки пересечения двух

прямых - A( 2 ; 2 )

Составим уравнение прямой, проходящей через точку А( 2 ; 2 ) параллельно прямой у = ( х + 4 ) / 4 ( зел. прямая ):

у - у0 = k • ( x - x0 )

у - 2 = ( 1/4 ) • ( х - 2 )

у = ( х - 2 ) / 4 + 2

у = ( х + 6 ) / 4 ( син. прямая )

Подробнее - на -

Объяснение:

4,7(92 оценок)
Ответ:
natalinatark
natalinatark
13.04.2021
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании, 
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, 
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
4,4(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ