AB=6cм, ВС=10 см, BH=8 cм AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BK=CD*BH Отсюда BH=AD*BK/CD BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BH=CD*BK Отсюда BH=CD*BK/AD BH=6*8/10=4.8 см
Пусть центр окружности к которой проведена касательная, точка О. ов- радиус, проведённый в точку касания, значит перпендикулярен касательной ВС. Угол СВА равен 90 градусов минус угол ОВА. Треугольник ВОА равнобедренный, значит углы при основании ОВА и ОАВ равны. Центральный угол ВОА равен 180 градусов минус два угла ОВА. Получается, что центральный угол в два раза больше угла между касательной и хордой и равен 92 градуса. Кроме того известно, что центральный угол (меньше развёрнутого) равен градусной мере дуги, на которую он опирается. ответ 92 градуса.