Если рассмотреть сечение, то получится прямоугольник со сторонами 2х и h , вписан в равнобедренный треугольник Составлю площадь поверхности цилиндра с радиусом х и высотой h (выраженной через х) как функцию от х и через производную найду ее максимум. найденное х подставлю в обем цилиндра... 1) выражу h через х из ΔАВН tgA=h/(6-x); h=(6-x)*tgA=(6-x)*(15/6)=5(6-x)/2=15-2.5x S(пов)=2pix^2+2pix*h=2pi*x^2+2pix(15-2.5x)= =2pix^2+30pix-5pix^2=30pix-3pix^2 приравниваю производную по х к 0 30pi=6pix x=5 h=5/2=2.5 V=pix^2*h=pi*5^2*2.5=62.5pi
Пусть SO высота пирамиды. Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах. ∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2 SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение. Значит, площадь основания равна половине площади боковой поверхности: Sосн = Sбок/2 = 36/2 = 18
ВС=270°
90*30=270
Объяснение:
это совсем леегоккк