4) ад=60/5*2=24
4) l adb = 30 град. > в треугольнике abd угол l a = 90 - 30 = 60 град.
l adb = l bdc = 30 град. > l d = l adb + l bdc = 30 + 30 = 60 град. =>
ab = cd > трапеция равнобедренная
bk и cm - перпендикуляры к ad > ak = md
треугольник abk:
l abk = 90 град.; l a = 60 град. и l abk = 30 град. => если
ak = x > ab = 2x (аналогично в треугольнике mcd: md = x и cd = 2x)
в трапеции abcd:
bk _|_ ad > l kbc = 90 град.
l kbd = 90 - l kdb = 90 - 30 = 60 град. =>
l cbd = l kbc - l kbd = 90 - 60 = 30 град. =>
в треугольнике bcd, так как l cbd = l cdb = 30 град. > bc = cd = x
=> в трапеции abcd:
ab = cd = 2x
ak = md = x
km = bc = cd = x =>
ad = ak + km + md = x + 2x + x = 4x
bc = 2x =>
p = ab + bc + cd + ad = 2x + 2x + 2x + 4x = 60 > 10x = 60 > x = 6
=>
ab = bc = cd = 2x = 2*6 = 12
ad = 4x = 4*6 = 24
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².