На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: