3. Диагонали четырехугольника равны 4 см и 9 см, а угол между ними 64градуса . Найдите стороны и углы четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
Смотри, площадь треугольника равна S=r*P/2, где P-периметр , а r-радиус вписанной окружности. P=ab+(ac+bc)=72, тогда S=240, так же площадь равна корню из(p/2*(p-ab)(p-bc)(p-ac), это формула герона, так как ac + bc =46, а ab = 26, то подставим всё сюда и будет выглядеть так:
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
Четырёхугольник ABCD - ромб.
Отрезки АС и BD - диагонали.
АС = АВ.
Найти :Острый угол = ?
Решение :Ромб - это параллелограмм, у которого все стороны равны.
Поэтому -
АВ = ВС = CD = AD.
Рассмотрим ΔАВС.
АС = АВ = ВС.
Следовательно, ΔАВС - равносторонний (по определению равностороннего треугольника).
Каждый угол равностороннего треугольника равен по 60°.Отсюда -
∠ВАС = ∠В = ∠ВСА = 60°.
Диагональ ромба является биссектрисой его угла.То есть -
∠А = 60°*2 = 120°.
Противоположные углы параллелограмма равны.Следовательно -
∠В = ∠D = 60°
∠А = ∠С = 120°.
Отсюда острый угол ромба = 60°.
ответ :60°.