В ромбе проведём диагонали, они перпендикулярны. Пусть центр окружности О. Ромб обозначим ABCD. Рассмотрим треугольник ВСО. Проведём радиус в точку касания это ОМ. ОМ перпендикулярна ВС это высота треугольника ВСО. Одну часть обозначим Х. Тогда гипотенуза треугольника Х+3Х. Высота в прямоугольном треугольнике есть среднее пропорциональное между отрезками гипотенузы. ОМ^2=X*3X ОМ=Х корней из 3. Вычислим площадь ромба 3Х*ОМ*2+Х*ОМ*2=8Х*ОМ=24 корня из 3. Но ОМ это Х корней из 3 8Х в квадрате корней из 3= 24 корня из 3. Сократим на 8 корней из 3. Будет Х в квадрате =3 Х = корню из 3. Найдём ОМ=корень из 3 умножить на корень из 3, будет 3.Я уверен что так!)
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
5. a)1/cos²a-1=1+tg²a-1=tg²a
b) 1/sin²a-1=1+ctg²a-1=ctg²a
6. a) cos30°=0.866
б)cos45°=0.707
в)ctg30°=1.732
г)ctg60°=0.577
Объяснение: