М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
10count
10count
14.11.2021 19:15 •  Геометрия

Периметр равнобедренного треугольника равен 16,5см. найдёте его стороны.если известно что боковая сторона в 2 раза больше основания.

👇
Ответ:
Ррррр5о
Ррррр5о
14.11.2021
ПУСТЬ  ОСНОВАНИЕ  ТРЕУГОЛЬНИКА  БУДЕТ х, ТОГДА  БОКОВАЯ СТОРОНА БУДЕТ

СОСТАВИМ УРАВНЕНИЕ
2Х+2Х+Х=16,5
5Х=16,5
Х=16,5:5
Х=3,3 ( ОСНОВАНИЕ)
3,3*2=6,6 ( БОКОВАЯ СТОРОНА)
4,4(28 оценок)
Открыть все ответы
Ответ:
Дарька2000
Дарька2000
14.11.2021

2√153 см ≈ 24,74 см

Объяснение:

1) 24 - це довжина гіпотенузи; а тому кут, який вона утворює з прямою дорівнює 45°, то обидва катета (один з них - довжина проекції, а інший-висота, відстань від точки до прямої) рівні. Приймемо довжину катета за х.

Тоді, згідно з теоремою Піфагора:

х² + х² = 24²

2х²=576

х² = 288

х = √288 см

2) Довжину другої похилої L знаходимо також за теоремою Піфагора:

L = √(18² + (√288)²) = √(324 + 288) = √612 = 2√153 ≈ 24,74 см

Відповідь: 2√153 см ≈ 24,74 см

1) 24 - это длина гипотенузы, а т.к. угол, который она образует с прямой равен 45°, то оба катета (один из них - длина проекции, а другой - высота, расстояние от точки до прямой) равны. Примем длину катета за х.

Тогда, согласно теореме Пифагора:

х² + х² = 24²

2х²=576

х² = 288

х = √288 см

2) Длину второй наклонной L находим также по теореме Пифагора:

L = √(18² + (√288)²) = √(324 + 288) = √612 = 2√153 ≈ 24,74 см

4,6(5 оценок)
Ответ:
129697113
129697113
14.11.2021

1). См. рис.1

   По условию, т.О - середина отрезков АВ и СD.

   Кроме того, AB⊥CD.  

   Четырехугольник, в котором диагонали пересекаются под прямым углом и делятся точкой пересечения пополам, является ромбом.

Следовательно, AD = DB = BC = CA = 17 (см)

В ΔАОD и ΔСОB:

         АО = ОВ; СО = ОD; ∠АОD = ∠COB = 90°

Следовательно, прямоугольные треугольники ΔАОD и ΔСОB равны по двум катетам.

---------------------------------

2). См. рис.2  

В ΔADM и ΔАКМ:

           ∠ADM = ∠AKM = 90°

           ∠DAM = ∠KAM = 70°   (АМ - биссектриса ∠ВАС)

Тогда:

            ∠DMA = ∠KMA = 180 - (90 + 70) = 20°

Следовательно, прямоугольные треугольники ΔADM и ΔАКМ равны по общей гипотенузе и острому углу.

--------------------------------

3). В ΔАВЕ и ΔDCE:

          ∠ABE = ∠DCE = 90°

          ∠BEA = ∠CED, как вертикальные

Тогда:

            ∠ВАЕ = ∠СDE = 20°

      и     ∠BEA = ∠CED = 180 - (90 + 20) = 70°

Так как ∠ВАЕ = ∠СDE = 20° и АВ = СD, то:

      ΔABE = ΔDCE по катету и прилежащему острому углу.

Величина угла ∠АЕD:

            ∠АЕD = 180 - 70 = 110°

В ΔАЕD:

                AE = ED, как гипотенузы в равных треугольниках.

                Следовательно, ΔАЕD - равнобедренный и:

                ∠EAD = ∠EDA = (180 - 110) : 2 = 35°      

В ΔABD и ΔACD:

                 ∠BAD = ∠CDA = 20 + 35 = 55°

             и  АВ = CD

Тогда:

            ΔABD = ΔACD по катету и прилежащему острому углу.


хотя бы первые две задачи
хотя бы первые две задачи
4,5(37 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ