Прямоугольник - частный случай параллелограмма, тогда , пусть биссектриса AM. Углы Bma и dam - накрест лежащие при параллельных прямых bc и ad, а значит они равны, тогда, угол dam= углу bam , т.к. Am бисскетриса.
Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию)
Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма.
1)получим треугольник со сторонами 4 и 5, и углом 180-52=128 используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.) a^2 = b^2 + c^2 - 2bc*cos(a) 2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
Abdent Середнячок
Прямоугольник - частный случай параллелограмма, тогда , пусть биссектриса AM. Углы Bma и dam - накрест лежащие при параллельных прямых bc и ad, а значит они равны, тогда, угол dam= углу bam , т.к. Am бисскетриса.
Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию)
Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма.
bm+mc= bc= 8+8=16см=ad
ab=bm=8см=cd
Периметр= 16+16+8+8=48
ответ : 48см