1
теорема косинусов
а)
вс^2=ab^2+ac^2 - 2*ab*ac*cosa=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
bc=√97 см
б)
ac^2=ab^2+bc^2 - 2*ab*bc*cosb=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
ас=√127 см
2
теорема косинусов
а)
cos120= - cos60
np^2=mn^2+mp^2 -2 mn*mp*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
np=√379 см
б)
np^2=
3
cos120= - cos60
а) меньшую диагональ (вd)
лежит напротив острого угла < 60
bd^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
bd=√52=2√13 см
б) большую диагональ (ас)
лежит напротив тупого угла < 120
ac^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
ac=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos< a
196=64+100 - 160*cos< a
32= - 160*cos< a
cos< a= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos< b
400=144+196-336* cos< b
60 =-336* cos< b
cos< b = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника < a=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sina=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол < с=180-< a-< b=180-30-40=110
по теореме синусов
ac/sin< b=bc/sin< a=ab/sin< c=2r
ac/sin40=bc/sin30=16/sin110
ac=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
bc= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
ab/sin< c=2r
r= ab/(2*sin< c)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма а и в - односторонние
< a - напротив диагонали d1
< b=180-< a - напротив диагонали d2
cosa= - cosb=
d1^2=a^2+b^2-2ab*cosa
d2^2= a^2+b^2-2ab*cosb = a^2+b^2-2ab*(-cosa)= a^2+b^2+2ab*cosa
d1^2+d2^2 = a^2+b^2-2ab*cosa + a^2+b^2 +2ab*cosa = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
доказано сумма квадратов диагоналей равна сумме квадратов (четырех)сторон
9
10
11
12
13
1
теорема косинусов
а)
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
№1
Объяснение:
Если четырёхугольник можно вписать в окружность, значит в этом четырёхугольнике сумма противолежащих углов равна 180° ⇒
⇒ угол, лежащий против угла в 120° равен 180° - 120° = 60° и угол, лежащий против угла в 150°, равен 180° - 150° = 30°
Так как вершины четырёхугольника лежат на окружности, его углы будут являться вписанными и отсюда, градусные меры дуг, на которые эти углы опираются, будут в два раза больше самих углов.
Находим, что углы в 60° и 30° четырёхугольника опираются на дуги в 120° и 60°
№2 (фото)
№3 ответ:4
№4ОЕ⊥СD⇒ ОЕ - радиус.
АВ⊥ВС и АD
Проведем OK⊥АВ
ОК=r
OH⊥AD
АН=ОК=OE=6
HD=ED=9
AD=AH+HD=15
Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.
Трапеция - четырехугольник.
ВС+AD=AB+CD
Р=ВС+AD+AB+CD=2•(10+15)=50 см
——————————————————
4. На рис. 134 точка О – центр вписанной окружности, угол А=углу С, BD=18 см, BO:OD=5:4. Найдите стороны треугольника.
DO+ВО=9х ⇒
х=18:9=2
OD=8, ВО=10.
По условию углы при АС равны. ⇒ ∆ АВС - равнобедренный, АВ=ВС.
Центр вписанной в треугольник окружности лежит на биссектрисе.
Биссектриса равнобедренного треугольника - высота и медиана. ⇒
∠BDA=90°
AD=CD.
Проведем ОН - перпендикуляр в точку касания на АВ.
Из ∆ ВОН по т.Пифагора ВН=6
В прямоугольных ∆ АВD и ∆ OBH острый угол при В общий.⇒
∆ АВD~∆ OBH
Из подобия следует отношение
АВ:ВО=ВD:BH
AB•6=10•18⇒
AB=180:6=30
По т.Пифагора AD=24 ⇒
АС=48
ВС=АD=30
№5В чотирикутник можна вписати коло тоді й тільки тоді, коли суми його протилежних сторін рівні.
Таким чином,
AB+CD= BC+AD;
10+7= 8+AD;
17=8+AD;
AD= 17-8;
AD= 9.
Відповідь: якщо AD=9 см, то в даний чотирикутник можна вписати коло.
№6если трапеция описана около окружности, то сумма оснований равна сумме боковых сторон, а средняя линия равна полусумме оснований,тогда средняя линия = (5+7)/2=6