Доказательство: пусть угол abc - вписанный угол окружности с центром o, опирающийся на дугу ac. докажем, что abc=1/2 дуги ac. есть 2 возможных варианта расположения луча bo относительно угла abc 1) луч ob совпадает с одной из сторон угла abc, например со стороной bc. в этом случае дугаac меньше полуокружности, поэтому угол aoc=дуге ac. так как угол aoc - внешний угол равнобедренного треугольника abo, ф углы 1 и 2 при основании равнобедренного треугольника равны, то угол aoc=уг.1+уг.2=2 уг.1отсюда следует, что 2 угол 1=дуг.ac или угол abc=уг1=1/2 дуги ac 2) луч bo делит угол abc на два угла. в этом случае луч bo пересекает дугу ac в некоторой точке d. точка d разделяет дугу ac на две дуги: дуга ad и дуга dc. по доказанному в номере один, угол abd=1/2 дуги ad и угdbc=1/2 дуги ad+1/2 дугиdc. складывая эти равенства попарно, получаем: угол abd+dbc=1/2 дуг ad+1/2 дугdc, или угол abc=1/2 дуги ac
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.