Ну, Вас не плохо готовят.
Пусть p = (a + b + c)/2; - ПОЛУпериметр, r - радиус вписанной окружности, r1 = 5, r2 = 20, r3 - радиусы вневписанных окружностей.
Аналогично формуле S = r*p очень легко доказать формулы
S = r1*(p - a) = r2*(p - b) = r3*(p - c);
{могу и показать, как это получается, только без рисунка :)
(достаточно доказать одно соотношение - остальные получаются заменой обозначений).
Пусть окружность с центром О касается стороны а, противолежащей углу А, и продолжений сторон b и с. Тогда площадь треугольника АВС равна сумме площадей треугольников ABO и ACO минус площадь треугольника BCO, у всех этих треугольников высоты равны r1
Sabc = Sabo + Saco - Scbo = (c*r1)/2 + (b*r1)/2 - (a*r1)/2 = r1*(b + c - a)/2 = r1*(p - a)}
Отсюда S/(p-a) = r1; S/(p-b) = r2; S/(p-c) = r3;
Если это все перемножить, то
r1*r2*r3 = S^3/((p-a)*(p-b)*(p-c)) = S^3*p/(p*(p-a)*(p-b)*(p-c)) = S^3*p/S^2
(была использована формула Герона для площади треугольника)
r1*r2*r3 = S*p;
Теперь надо вспомнить, что треугольник прямоугольный (до этого прямоугольность нигде не использовалась).
В этом случае радиус r3 окружности, касающейся гипотенузы и продолжений катетов, просто равен p. Доказать это можно кучей к примеру, так
поскольку p - c = (a + b +c)/2 - c = (a + b - c)/2 = r, а r3*(p - c) = S, то r3*r = S, откуда r3 = p;
Итак, S = r1*r2 = 100 кв.см.
Я считал, что r1= 5 и r2 = 20 - радиусы вневписанных окружностей, касающихся катета и продолжений другого катета и гипотенузы. Если это не так, задача на много сложнее.
На координатной плоскости есть окружность радиусом √2/2, с центром в начале координат. На отрезке, диаметре этой окружности, с концами А (0, √2/2) и В (0,-√2/2) построен равносторонний треугольник АВС1.
Его третья вершина лежит в точке С1 (√6/2,0).
Окружность с центром в этой точке и радиусом √7, (если есть решение) пересекает первую окружность в двух точках, симметричных относительно оси X. Координаты точки С в верхней полуплоскости (то есть y>0) находятся так.
x^2 + y^2 = 1/2;
(x - √6/2)^2 + y^2 = 7;
Так вот, у этой системы НЕТ решения, потому что
√6/2 + √2/2 < √7;
То есть эти окружности не пересекаются.
Поэтому при любом угле треугольника сумма расстояний от вершин до точки Ферма (то есть наименьшее возможное значение этой суммы) будет МЕНЬШЕ √7.
Не похоже, что я где то ошибся, но все может быть, проверьте.
Теорию точки Ферма (она же точка Торичелли) в треугольниках я тут излагать не стану. Достаточно понимать, что для прямоугольного треугольника она СУЩЕСТВУЕТ и лежит внутри треугольника.
Расстояние от вершины С, лежащей на окружности x^2 + y^2 = 1/2, до точки С1 ОБЯЗАТЕЛЬНО должно равняться заданному в задаче √7.
(Может, в условии другое число, например, гипотенуза √3, или нвр = √5)
Кстати, для прямоугольного треугольника довольно легко из теоремы косинусов получить соотношение
m^2 = c^2*(1 + (√3/2)*sin(2*Ф))
где Ф - острый угол треугольника, с - гипотенуза, m - минимальная сумма расстояний от внутренней точки до вершин треугольника.
Отсюда сразу видно, что при (m/c)^2 = 7/2; sin(2*Ф) >1; чего быть не может.
Отношение (m/c)^2 максимально равно 1 + √3/2 при Ф = 45 градусов, это примерно 1,866, что почти в два раза меньше, чем 7/2
Подробное решение во вложении