В основании правильной 4-ной пирамиды лежит квадрат. Пусть его диагонали равны 2х, тогда из условия равновеликости имеем: 1/2*2x*2x=1/2*2x*10, значит: 2x=10 <=> x=5. Площадь основания равна 2x^2=2*25=50. Ребро основания по теореме Пифагора равно кореньиз(25+25)=5*кореньиздвух. Боковое ребро по теореме Пифагора равно кореньиз (100+25)=5*кореньизтрех. Т.к. боковая грань это равнобедр.треуг.со сторонами 5*кореньизтрех, 5*кореньизтрех, 5*кореньиздвух, то площадь найдем как полупроизведение высоты на основание. Высота грани по теореме Пифагора равна кореньиз(125-12,5)=кореньиз(112,5)=7,5*кореньиздвух. Площадь грани равна 1/2*5*кореньиздвух*7,5*кореньиздвух=37,5. Полная поверхность равна 4*37,5+50=200. ответ: 200.
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.