В правильной пирамиде ее вершина проецируется в центр основания. Основание - правильный треугольник, центром которого является пересечение высот, медиан и биссектрис. По свойству медиан, они делятся точкой пересечения в отношении 2:1, считая от вершины треугольника. По формуле высоты (медианы, биссектрисы) правильного треугольника: h = (√3/2)*a, где а - сторона треугольника. Тогда h=(3/2)*6 = 3√3, а отрезок высоты АО = (2/3)*h = 2√3. По Пифагору высота пирамиды DO=√(AD²-AO²) = √(16-12) = √4 = 2. ответ: высота пирамиды равна 2 ед.
Любая геометрическая задача сводится к рассмотрению треугольника, либо пары треугольников, так вот: рассмотрим треугольник АСB, он равнобедренный, т.к., угол С = 90*, а угол А = 45*, чтобы найти угол B= 180-(90+45) = 45*, углы при основании равны, треугольник равнобедренный по 1 свойству. Так же мы знаем, что в равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой, по 4 свойству, соответственно, медиана - это линия, которая проведена из вершины к середине противоположной стороны. Зная длину стороны АB = 4, мы можем вычислить AB=AH+HB, 4=2+2, значит отрезок HB=2 см. Зная, что от является катетом равнобедренного треугольника, по 1 свойству, т.к., у нас имеется угол в 90* и один угол в 45*, значит угол B=45*, мы получаем, что CH=HB=2см.
Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
ответ:2
Объяснение:
В правильной пирамиде ее вершина проецируется в центр основания. Основание - правильный треугольник, центром которого является пересечение высот, медиан и биссектрис. По свойству медиан, они делятся точкой пересечения в отношении 2:1, считая от вершины треугольника. По формуле высоты (медианы, биссектрисы) правильного треугольника: h = (√3/2)*a, где а - сторона треугольника. Тогда h=(3/2)*6 = 3√3, а отрезок высоты АО = (2/3)*h = 2√3. По Пифагору высота пирамиды DO=√(AD²-AO²) = √(16-12) = √4 = 2. ответ: высота пирамиды равна 2 ед.