1.стороны параллелограмма равны 10см и 12см, а один из углов равен 150 градусов. найдите площадь параллелограмма. 2.найдите сторону ромба, площадь которого равна 12см квадрата, а высота-2,4см зделайте на листике и своткайте
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Треугольники АМВ и CMD подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого треугольника. В нашем случае: <ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD <BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС Для подобных треугольников можно записать: DC:AB=MC:MA Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде: 24:16=x:(25-x) 24(25-x)=16x 600-24x=16x 40x=600 x=15 МС=15 см
a - одна сторона парал-ма = 10
b - вторая сторона парал-ма = 12
sin a = sin(180-150) = sin 30 = 1/2
S = АВ * Н
АВ - сторона ромба
Н - высота
АВ * 2,4 = 12
АВ = 12 / 2,4 = 5 см