1. поскольку A1D1 II CВ, то можно искать угол между АСВ1 и СВ.
2. Поскольку точка С принадлежит плоскости АСВ1, то для построения проекции СВ на АСВ1 достаточно построить проекцию точки В на эту плоскость.
3. Диагональное сечение DBB1D1 перпендикулярно прямой АС, поскольку в нем есть 2 прямых, перпендикулярных АС - это BD и ВВ1. Поэтому плоскости DBB1D1 и АСВ1 перпедикулярны (АСВ1 содержит прямую, пепендикулярную другой плоскости DBB1D1). Отсюда следует, что если в плоскости DBB1D1 выделить треугольник ВВ1О, где О - середина АС (центр квадрата АВСD), то высота ВМ, проведенная к гипотенузе ВО, и есть перпендикуляр к плоскости АВС1. В самом деле, ВМ перпендикулярно В1О и АС (напомню - АС перпендикулярно плоскости DBB1D1), то есть 2 прямым в плоскости АСВ1.
4. Таким образом, точка М - проекция В на ACB1, и синус искомого угла равен ВМ/ВС. Пусть ВС = 1 (примем сторону куба за единицу длины). Найдем ВМ.
5. Для этого вернемся к треугольнику В1ВО. ВВ1 = 1; ВО = 1/корень(2); вычисляем В1О = корень(1 + 1/2) = корень(3/2);
ВМ*В1О = ВВ1*ВО; (это просто площадь тр-ка, записанная
1. Соединим точки А и Д₁ и точку В и С₁ и рассмотрим четырехугольник АВС₁Д₁. 2. АД₁ || ВС₁, так как они лежат в параллельных плоскостях противоположных граней куба АА₁Д₁Д и ВВ₁С₁С, которые являются квадратами с одинаковыми (равными между собой) сторонами. 3. АД₁ = ВС₁, как диагонали одинаковых квадратов. 3. Тогда четырехугольник АВС₁Д₁ является параллелограммом (на самом деле, прямоугольником, но для решения данной задачи это доказывать не обязательно), так как его стороны взаимно параллельны и равны между собой (АВ || и = Д₁С₁ как непересекающиеся грани куба - по свойству куба). 4. АС₁ и БД₁ являются диагоналями параллелограмма АВС₁Д₁, а значит они лежат в одной плоскости и в точке пересечения делятся пополам.
1. поскольку A1D1 II CВ, то можно искать угол между АСВ1 и СВ.
2. Поскольку точка С принадлежит плоскости АСВ1, то для построения проекции СВ на АСВ1 достаточно построить проекцию точки В на эту плоскость.
3. Диагональное сечение DBB1D1 перпендикулярно прямой АС, поскольку в нем есть 2 прямых, перпендикулярных АС - это BD и ВВ1. Поэтому плоскости DBB1D1 и АСВ1 перпедикулярны (АСВ1 содержит прямую, пепендикулярную другой плоскости DBB1D1). Отсюда следует, что если в плоскости DBB1D1 выделить треугольник ВВ1О, где О - середина АС (центр квадрата АВСD), то высота ВМ, проведенная к гипотенузе ВО, и есть перпендикуляр к плоскости АВС1. В самом деле, ВМ перпендикулярно В1О и АС (напомню - АС перпендикулярно плоскости DBB1D1), то есть 2 прямым в плоскости АСВ1.
4. Таким образом, точка М - проекция В на ACB1, и синус искомого угла равен ВМ/ВС. Пусть ВС = 1 (примем сторону куба за единицу длины). Найдем ВМ.
5. Для этого вернемся к треугольнику В1ВО. ВВ1 = 1; ВО = 1/корень(2); вычисляем В1О = корень(1 + 1/2) = корень(3/2);
ВМ*В1О = ВВ1*ВО; (это просто площадь тр-ка, записанная
ВМ = 1*(1/корень(2))/(корень(3/2)) = 1/корень(3);
это ответ.