1) луч
2) лучи обозначаются через две латинские буквы или одной маленькой латинской буквой.
3) дополнительные лучи – это лучи, имеющие общее начало, противоположные направления и лежащие на одной прямой
4) угол
5) одной заглавной латинской буквой ( вершина угла ), двумя малыми латинскими буквами ( стороны угла )
6) если его обе плоскости лежат на одной прямой
7) две полуплоскости
8) два угла называются равными - если их можно совместить наложением
9) биссектриса угла — луч с началом в вершине угла, делящий угол на две равные части
10) в градусах
11) 180 градусов
12) острый
13) у которого градус меньше 90
14) у которого градус больше 120
15) 1) равные углы имеют равные величины равные величины 2) если он состоит из двух углов
16) равные углы имеют равные величины
SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2)
64√3=(1/4)a²√3, a²=256, a=16
основание Δ обозначим с.
рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания.
cos 30°=(c/2)/a
√3/2=(c/2)/16, √3/2=c/32, c=16√3
ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2.
пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы)
по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3
SΔ=(1/2)*c*h
64√3=(1/2)*2x√3*x
64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см
ответ: 16,16 и 16√3