В трапеции ABCD диагонали пересекаются в точке о точка пересечения диагоналей трапеции делит диагональ AC на отрезки 9 см и 4 см Найдите основные трапеции AD и BC если их разность равна 25 см выполните чертёж По условию задачи
Раз прямоугольный, да еще и равнобедренный, то два катета равны по х см, а гипотенуза 12см. Тогда по теореме ПИфагора 2х²=12², или х²=12*6, откуда х=√72=6√2/см/
Площадь треугольника равна половине произведения его катетов, т.е. (1/2)*6√2*6√2=36/см²/, но с другой стороны, эта же площадь находится как произведение полупериметра треугольника на радиус окружности, вписанной в этот треугольник, т.е. полупериметр, равный (12+2*6√2)/2=6+6√2 надо умножить на искомый радиус и получим 36.
откуда радиус равен 36/(6+6√2)=36/(6*(1+√2))=6/(1+√2)=6(√2-1), а площадь круга равна Пи эр в квадрате. то есть Пи*(6(√2-1)²)=36*(3-2*√2)
ответ. 36(3-2√2)
2.Радиус окружности ищем по формуле площадь треугольника деленная на полупериметр.
Площадь треугольника найдем по формуле Герона.
Полупериметр треугольника р=
(15+15+24=)/2=27
27-15=12; 27-15=12; 27-24=3; значит, площадь равна корню квадратному из произведения, равного 12*12*3*27; 12*9=108, Площадь 12*9/27=4, деленная на полупериметр - это радиус. Значит, радиус равен 4 см. Тогда длина окружности равна два пи эр, т.е. 8 ПИ, а площадь круга пи эр в квадрате, т.е. 16 Пи.
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Раз прямоугольный, да еще и равнобедренный, то два катета равны по х см, а гипотенуза 12см. Тогда по теореме ПИфагора 2х²=12², или х²=12*6, откуда х=√72=6√2/см/
Площадь треугольника равна половине произведения его катетов, т.е. (1/2)*6√2*6√2=36/см²/, но с другой стороны, эта же площадь находится как произведение полупериметра треугольника на радиус окружности, вписанной в этот треугольник, т.е. полупериметр, равный (12+2*6√2)/2=6+6√2 надо умножить на искомый радиус и получим 36.
откуда радиус равен 36/(6+6√2)=36/(6*(1+√2))=6/(1+√2)=6(√2-1), а площадь круга равна Пи эр в квадрате. то есть Пи*(6(√2-1)²)=36*(3-2*√2)
ответ. 36(3-2√2)
2.Радиус окружности ищем по формуле площадь треугольника деленная на полупериметр.
Площадь треугольника найдем по формуле Герона.
Полупериметр треугольника р=
(15+15+24=)/2=27
27-15=12; 27-15=12; 27-24=3; значит, площадь равна корню квадратному из произведения, равного 12*12*3*27; 12*9=108, Площадь 12*9/27=4, деленная на полупериметр - это радиус. Значит, радиус равен 4 см. Тогда длина окружности равна два пи эр, т.е. 8 ПИ, а площадь круга пи эр в квадрате, т.е. 16 Пи.