Если хорошо посмотреть на правильный (равносторонний ) Δ АВС и точку О (центр сферы. то увидишь правильную пирамиду, у которой боковое ребро - радиус сферы. Высота пирамиды =2 и сторона основания = 6 Надо найти боковое ребро ( оно = R и S = 4πR^2) Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора m^2 = 6^2 - 3^2 = 36 - 9 = 27 m = 3√3 Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы. Ищем площадь сферы. S = 4π R^2 = 4π(2√3/3)^2=16π/3
1)получим треугольник со сторонами 4 и 5, и углом 180-52=128 используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.) a^2 = b^2 + c^2 - 2bc*cos(a) 2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
Надо найти боковое ребро ( оно = R и S = 4πR^2)
Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора
m^2 = 6^2 - 3^2 = 36 - 9 = 27
m = 3√3
Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы.
Ищем площадь сферы.
S = 4π R^2 = 4π(2√3/3)^2=16π/3