М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baxtiyorova2001
baxtiyorova2001
01.04.2022 18:13 •  Геометрия

Дан прямоугольный треугольник 6. ABC (< C = 90°)\, <A = 30º, AC = 2,DC \ ABC, DC = √3. Чему равен угол между плоскостями ADB и ACB?

👇
Ответ:
Коугар
Коугар
01.04.2022
Чтобы найти угол между плоскостями ADB и ACB, нам нужно найти угол между их нормалями.

Нормаль к плоскости ADB - это векторное произведение двух векторов, лежащих в плоскости ADB и не параллельных друг другу. Давайте найдем эти два вектора.

В плоскости ADB, у нас есть два известных вектора: AB и AD.

AB - это вектор, идущий от точки A до точки B. По определению прямоугольного треугольника, угол BAC (то есть угол между прямыми AB и AC) равен 90°, поэтому угол ABC также равен 90°. Так как BC - сторона прямоугольного треугольника ABC, а угол ABC = 90°, то сторона BC тоже является гипотенузой треугольника ABC.

AD - это вектор, идущий от точки A до точки D. Мы знаем, что угол BAC = 30°, а DC - сторона прямоугольного треугольника ADC. Поэтому AD - это гипотенуза треугольника ADC, а DC - это катет.

Таким образом, мы получим два вектора в плоскости ADB: AB и AD.

Теперь найдем угол между этими двумя векторами.

Для этого вспомним, что скалярное произведение двух векторов равно произведению длин векторов на косинус угла между ними.

То есть, если у нас есть два вектора u и v, то мы можем найти угол между ними следующим образом:
θ = arccos( (u·v) / (|u|·|v|) )

Применяя эту формулу к векторам AB и AD, мы найдем угол между плоскостями ADB и ACB.

Сначала найдем длины векторов AB и AD.

Так как AB - гипотенуза прямоугольного треугольника ABC, а угол ABC = 90°, то длина вектора AB равна длине гипотенузы BC. Известно, что AC = 2, а DC = √3. Мы можем найти длину BC, используя теорему Пифагора: BC^2 = AC^2 + DC^2. Подставив значения в эту формулу, получим: BC^2 = 2^2 + (√3)^2 = 4 + 3 = 7. Значит, BC = √7.

Также, так как AD - гипотенуза прямоугольного треугольника ADC, а угол BAC = 30°, то длина вектора AD равна длине гипотенузы DC. Значит, длина вектора AD равна √3.

Теперь, рассчитаем скалярное произведение векторов AB и AD:
AB·AD = |AB|·|AD|·cos(θ)

Зная, что |AB| = √7 и |AD| = √3, мы можем найти cos(θ):
cos(θ) = (AB·AD) / (|AB|·|AD|)

Подставляя значения, получим:
cos(θ) = (√7·√3) / (√7·√3) = (√21) / (√21) = 1

Таким образом, cos(θ) = 1. Чтобы найти значение угла θ, возьмем обратный cosinus от 1:
θ = arccos(1) = 0°

Таким образом, угол между плоскостями ADB и ACB равен 0°.
4,8(20 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ