1. расстояние от точки B до прямой A1F1 это длина перпендикуляра ВР к прямой A1F1, По теореме о трех перпендикулярах его проекция В1Р перпендикулярна к прямой A1F1. Из треугольника А1В1Р надем В1Р: угол В1А1Р равен 60°, т к внутренний угол А1 правильного шестиугольника равен 120°, А1В1 =2, тогда В1Р=В1А1*sin60°=2*√3/2=√3. Из прямоугольного треугольника ВВ1Р найдем гипотенузу ВР: ВР=√(ВВ1^2+B1P^2)=√(3+4)=√7. 2. ОН - расстояние от плоскости сечения до центра, т к площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72, а высота цилиндра 3, то АВ=72:3=24, АН=12, ОА=R=13, ОН=√(OA^2-AH^2)=√(169-144)=√25=5
обозначим вершины ромба буквами a, b, c, d. буквой o обозначим точку пересечения диагоналей.
угол dab = 120о. отсюда следует, угол oab = 60о, так как диагональ ас делит угол пополам.
так как у нас ромб разбит на прямоугольные треугольники, рассмотрим треугольник oab.
мы знаем, что угол oab = 60о. значит угол аво = 30о.
так как в точке пересечения диагонали ромба делятся пополам, имеем ао = 0,5 ас. получаем ао = 0,5 * 4,5 = 2,25 см.
напротив угла 30о лежит катет. что равен половине гипотенузы.
если ао = 2,25 см, то ав, являясь гипотенузой прямоугольного треугольника, будет равна 2 * ао
ав = 2 * 2,25 = 4,5 см.
нам известно, что у ромба все стороны равны.
периметр ромба составит р = 4 *ав, з = 4 * 4,5 см = 18 см.
ответ: периметр ромба составляет 18 см