Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
k - коэффициент подобия, т.е. a1/a2 = k
S1/S2 = k^2 = (0,5a1h1)/(0,5a2h2) = (a1/a2)*(h1/h2) = k*9/5
k = 9/5
S1/S2 = k^2 = (9/5)^2 = 81/25 = 3,24
первый треугольник больше второго в 3,24 раза