1.Пусть х - ∠ 1, тогда 2х - ∠2 угол.
Сумма острых углов прямоугольного треугольника равна 90°
х + 2х = 90
3х = 90
х = 30°
30° - ∠1
∠2 = 30 × 2 = 60°
ответ: 60°; 30°.
2. Прямоугольный треугольник - треугольник, у которого один угол прямой (то есть равен 90°.
Осталось найти ещё два острых.
Пусть х - ∠1, тогда х - 18 - ∠2
Сумма острых углов прямоугольного треугольника равна 90°
х + (х - 18) = 90
2х = 108
х = 54
54° - ∠1
54 - 18 = 36° - ∠2
ответ: 36°; 54°; 90°
3.Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Гипотенуза = 6 × 2 = 12 см
ответ: 12 см
4. Сумма острых углов прямоугольного треугольника равна 90°
А так как треугольник равнобедренный => ∠1 = ∠2 = 90 ÷ 2 = 45°
Один угол прямой в прямоугольном треугольнике => ∠3 = 90°
ответ: 45°; 45°; 90°.
5. Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 60 = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АВ = 6 × 2 = 12 см
ответ: 12 см
6. Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°
=> ∠А = 30°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
ответ: 60°.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: