, как диагонали равных квадратов, значит Δ
- равнобедренный, О - середина АС, значит
- медиана, биссектриса и высота, то есть
⊥
⊥
,
⊥
, значит
⊥
, и перпендикулярна любой прямой этой плоскости, в том числе
, значит ∠
,
- проекция
на плоскость АВС и
⊥
, значит
⊥
и ∠
Периметр, отсекаемого диагональю d1 треугольника P1=a+a+d1 => 36=26 + d1 и d1=10 (см).
Квадрат второй дигонали (d2)²=4a²-(d1)²=676-100=576 => d2=24 (см).
Диагонали ромба взаимно перпендикулярны, поэтому его площадь S=d1•d2/2=10•24/2=120 см².
Но также S=a•h, где h - высота ромба. Тогда h=120/13≈9,23 (см).