М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
natashavoropaeva
natashavoropaeva
02.08.2020 02:55 •  Геометрия

Найдите меньшую диагональ параллелограмма, стороны которого равны 11 см и 3√3 см, а угол равен 150°.

👇
Ответ:
Dizer1
Dizer1
02.08.2020
BD = 7 см

Объяснение:

Дано: AB = 3\sqrt{3} см, BC = 11 см, ∠ABC = 150°

Найти: BD - ?

Решение: Рассмотрим треугольник ΔABC. По теореме косинусов:

AC = \sqrt{AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \angle ABC} = \sqrt{(3\sqrt{3} )^{2} + 11^{2} - 2 \cdot 3\sqrt{3} \cdot 11 \cdot \cos \angle (150^{\circ})}== \sqrt{27 + 121 + 66\sqrt{3} \cdot \dfrac{\sqrt{3} }{2} } = \sqrt{148+99} = \sqrt{247} см.

По тождеству параллелограмма:

2AB^{2} + 2BC^{2} = AC^{2} + BD^{2}

2 \cdot 27 + 2\cdot 121 = 247 + BD^{2}

BD^{2} + 247 = 296

BD^{2} = 49

BD = \sqrt{49} = 7 см.


Найдите меньшую диагональ параллелограмма, стороны которого равны 11 см и 3√3 см, а угол равен 150°.
4,7(2 оценок)
Открыть все ответы
Ответ:
jdhhdd
jdhhdd
02.08.2020

Объяснение:

Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Пусть плоскость проведённая через B, D и серединную точку M ребра B₁C₁ пересекается с плоскостью B₁C₁А₁ по прямой MN. M∈B₁C₁, N∈D₁C₁.

⇒MN||BD⇒BDNM-трапеция

BD||B₁D₁; MN||BD⇒MN||B₁D₁

MN-средняя линия треугольника B₁C₁D₁

ABCDA1B1C1D1- правильный прямоугольный параллелепипед⇒ABCD-квадрат, а боковые грани прямоугольники.

B₁M=0,5B₁C₁=ND₁, DD₁=BB₁, ∠MB₁B=∠ND₁D=90°⇒ΔMB₁B=ΔND₁D⇒MB=ND⇒

⇒BDNM-равнобедренная трапеция. Ч.Т.Д.


Докажи, что сечение правильного прямоугольного параллелепипеда ABCDA1B1C1D1, проведённое через B, D
4,8(90 оценок)
Ответ:
Elizabeth191102
Elizabeth191102
02.08.2020

Объяснение:

Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Пусть плоскость проведённая через B, D и серединную точку M ребра B₁C₁ пересекается с плоскостью B₁C₁А₁ по прямой MN. M∈B₁C₁, N∈D₁C₁.

⇒MN||BD⇒BDNM-трапеция

BD||B₁D₁; MN||BD⇒MN||B₁D₁

MN-средняя линия треугольника B₁C₁D₁

ABCDA1B1C1D1- правильный прямоугольный параллелепипед⇒ABCD-квадрат, а боковые грани прямоугольники.

B₁M=0,5B₁C₁=ND₁, DD₁=BB₁, ∠MB₁B=∠ND₁D=90°⇒ΔMB₁B=ΔND₁D⇒MB=ND⇒

⇒BDNM-равнобедренная трапеция. Ч.Т.Д.


Докажи, что сечение правильного прямоугольного параллелепипеда ABCDA1B1C1D1, проведённое через B, D
4,7(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ