
ответ:вот
Объяснение:
ПУсть плоскость проведенная через середины ребер AB, BC, BB1 пересекает эти ребра в точках N, M, K соответственно.
Δ BMN - равнобедренный, прямоугольный ==> угол M=углу N = 45 градусов
Δ ACD - равнобедренный, прямоугольный ==> угол A=углу C = 45 градусов
==>
MN || AC(т.к соответственные углы равны, при пересечении данных прямых прямой ВС)
Δ BКN - равнобедренный, прямоугольный ==> угол К=углу N = 45 градусов
Δ ABB1 - равнобедренный, прямоугольный ==> угол A=углу B1 = 45 градусов
==>
AB1 || KN(т.к соответственные углы равны, при пересечении данных прямых прямой ВB1)
==>
плоскость ACB1 || KMN
Δ ACB1 - равносторонний(AB1=B1C=AC)
рассмотрим Δ ACD - равнобедренный, прямоугольный, ==>
по т-ме Пифагора AC^2 = AD^2+CD^2 = 2*AD^2 AC= AD* корень из 2 = 2корня из 2
Pacb1 = 3*AC = 6корней из 2
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.
а)
По теореме Пифагора
CD² = АС² - AD²
и
CD² = ВС² - х²
Приравниваем правые части выражений
АС² - AD² = ВС² - х²
9² - 6² = 15² - х²
х² = 180
х = 6√5 ≈ 13,4 (см).
б)
АD - ВC = 5 - 2 = 3
По теореме Пифагора
х² = АС² + (АD - ВC)²
х² = 4² + 3³
х² = 25
х = 5 (см).
в)
По теореме Пифагора
АВ² = АС² + ВС²
и
АВ² = х² + х²
Приравниваем правые части выражений
АС² + ВС² = 2х²
5² + 8² = 2х²
2х² = 89
х² = 0,5 · 89
х = 0,5√178 ≈ 6,67 (см).