К — середина сторони ромба, МК = 12 см перпендикуляр, проведе- ний до площини ромба. Побудуйте перпендикуляри, проведені з точ- ки M до діагоналей ромба. Знайдіть довжини цих перпендикулярів, якщо сторона ромба дорівнює 20 см, а кут 60°. -
Треугольники АМК и ВМС подобны за равными углами ∠М - общий ∠КАМ=∠МВС( ВСпаралельно АК углы КАВ и АВХ внутренние разносторонние а ∠АВХ=∠МВС- как вертикальные Углы АКС и МСВ равны аналогично ВС паралельно АК ∠АКСи∠КСУ равны как внутренние разносторонние а ∠КСУ=∠МСВ как вертикальные (ВС прслева от В на прямой ВС поставь Х а справа от С точку у) Треугольники подобны значит соответствующие стороны этих треугольников пропорциональны составим пропорцию АМ АМ/BM=AK/BC AM=AB+BM=4+8=12 12/8=18/BCза основным свойством пропорции произведение крайних членов равно произведению средних BC·12=8·18 ВС=8·18/12 BC=12
По теореме Пифагора
a²+b²=16²
S=a·b/2
Решаем систему двух уравнений с двумя неизвестными
a²+b²=256
a·b=64√2 ⇒ b=64√2/a
a²+(64√2/a)²=256
a⁴-256a²+8192=0
D=256²-4·8192=65536-32768=32768=(128√2)²
a²=(256-(128√2))/2=128-64√2 или а²=(256+(128√2))/2=128+64√2
a₁=√(128-64√2)=8·√ (2-√2) или a₂=8·√(2+√2)
b₁=64·√2/8√(2-√2) =8·√2·√(2+√2)/ √(2-√2)√(2+√2)=
=8√2·√(2+√2)/√(2²-(√2)²)=
=8√2·√(2+√2)/√2= 8·√(2+√2)
b₂=64√2/8√(2+√2) =8√2·√(2-√2)/ √(2-√2)√(2+√2)=
=8√2·√(2-√2)/√(2²-(√2)²)=
=8√2·√(2-√2)/√2= 8·√(2-√2)
tgα=a₁/b₁=8·√(2-√2)/8·√(2+√2) =√(2-√2)/√(2+√2)=
=√(2-√2)√(2-√2)/√(2+√2)√(2-√2)=
=√(6-4√2)/√2=√(3√2-4)
или
tgα=a₂/b₂=8·√(2+√2)/8·√(2-√2) =√(2+√2)/√(2-√2)=
=√(2+√2)√(2+√2)/√(2+√2)√(2-√2)=
=√(6+4√2)/√2=√(3√2+4)