1. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Дано: ω (О; ОА), СА и СВ - касательные (А и В - точки касания). Доказать: СА = СВ, ∠АСО = ∠ВСО. Доказательство: Проведем радиусы в точки касания. Они перпендикулярны касательным (по свойству касательной). ∠САО = ∠СВО = 90°, ОА = ОВ как радиусы, ОС - общая гипотенуза для треугольников САО и СВО, ⇒ ΔСАО = ΔСВО по катету и гипотенузе. Следовательно, СА = СВ и ∠АСО = ∠ВСО. Доказано.
2. Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
3. Соединяем данную точку А с центром окружности. Проводим перпендикуляр к полученному радиусу, проходящий через данную точку. Для этого на луче ОА откладываем отрезок АВ = ОА. Строим две окружности равного радиуса (произвольного, но больше половины отрезка ОВ) с центрами в точках О и В. Через точки пересечения окружностей проводим прямую а. Это и есть прямая, перпендикулярная радиусу ОА. Прямая а - касательная к окружности.
1. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Дано: ω (О; ОА), СА и СВ - касательные (А и В - точки касания). Доказать: СА = СВ, ∠АСО = ∠ВСО. Доказательство: Проведем радиусы в точки касания. Они перпендикулярны касательным (по свойству касательной). ∠САО = ∠СВО = 90°, ОА = ОВ как радиусы, ОС - общая гипотенуза для треугольников САО и СВО, ⇒ ΔСАО = ΔСВО по катету и гипотенузе. Следовательно, СА = СВ и ∠АСО = ∠ВСО. Доказано.
2. Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
3. Соединяем данную точку А с центром окружности. Проводим перпендикуляр к полученному радиусу, проходящий через данную точку. Для этого на луче ОА откладываем отрезок АВ = ОА. Строим две окружности равного радиуса (произвольного, но больше половины отрезка ОВ) с центрами в точках О и В. Через точки пересечения окружностей проводим прямую а. Это и есть прямая, перпендикулярная радиусу ОА. Прямая а - касательная к окружности.
Объяснение:
5)
DC=AD, т.к. ВD- биссектрисса, высота и медиана равнобедренного треугольника.
DC=AC/2=16/2=8ед.
∆ВDC- прямоугольный треугольник
По теореме Пифагора
ВD=√(BC²-DC²)=√(17²-8²)=√(289-64)=
=√225=15ед.
ответ: х=15ед.
6)
Формула нахождения высоты равностороннего треугольника
h=a√3/2, где а- сторона треугольника;
RK=RN√3/2=6√3/2=3√3 ед.
ответ: х=3√3 ед.
7)
Из формулы нахождения высоты равностороннего треугольника
h=a√3/2, найдем сторону.
РR=2*TR/√3=2*8/√3=16√3/3 ед.
ответ: х=16√3/3 ед.
8)
∆АСD- прямоугольный треугольник
По теореме Пифагора
СD=√(AC²-AD²)=√(26²-10²)=√(676-100)=
=√576=24ед
ответ: х=24ед.