1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
1) Эту задачу можно решить двумя
1 - геометрическим,
2 - координатным.
1. АВ = √(8² + 10² - 2*8*10*cos(180-2*30)) = √(64 + 100 + 80) = √244 = 2√61.
Далее используем формулу определения длины медианы L.
L = (1/2)*√(2*8² + 2*10² - 244) = (1/2)√84 = √21.
2. Находим координаты точек А и В с учётом длины отрезков и углов.
А = (10*cos30; 10*sin30) = (5√3; 5).
B = (8*cos(-30); 8*sin(-30)) = (-4√3; 4).
Находим основание М медианы как середину АВ : М = (0,5√3; 4,5).
Вектор ОМ равен (0,5√3; 4,5).
Его длина - это длина медианы: |OM| = √((0,5√3)² + 4,5²) =√21.
2) Даны вершины треугольника А(3; 5), В(1; 3), С(4;4).
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √8 ≈ 2,828427125.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3,16227766.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √2 ≈ 1,414213562.
Периметр равен √8 +√10 +√2 ≈ 7,40492 .