Зточки a, що лежить поза колом з центром у точці o, проведино дотичні ab і ac (b і c- точки дотику), кут bac =60°.знайдіть довжину радіуса кола, якщо oa=15см
Вот Вам решение, от которого учитель сильно занервничает. :)
Чтобы было легче объяснять, напомню - K - середина DB, N - середина DG. Пусть M - середина BG.
В условии проведена прямая KN II BG.
Если провести ЕЩЕ и прямые MK II DG и MN II DB, то треугольник DBG будет разрезан на 4 РАВНЫХ треугольника, одним из которых будет DKN, еще три - это BMK, GMN и KNM.
Все они очевидно подобны из за равенства углов, и имеют общие соответственные стороны с треугольником KNM, то есть, по просту, все равны треугольнику KNM, то есть все равны между собой :).
Поэтому площадь DKN составляет четверть площади DBG.
Стадартное решение обычно связано с тем, что площади подобных фигур относятся, как квадраты линейных размеров.
Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
Вот Вам решение, от которого учитель сильно занервничает. :)
Чтобы было легче объяснять, напомню - K - середина DB, N - середина DG. Пусть M - середина BG.
В условии проведена прямая KN II BG.
Если провести ЕЩЕ и прямые MK II DG и MN II DB, то треугольник DBG будет разрезан на 4 РАВНЫХ треугольника, одним из которых будет DKN, еще три - это BMK, GMN и KNM.
Все они очевидно подобны из за равенства углов, и имеют общие соответственные стороны с треугольником KNM, то есть, по просту, все равны треугольнику KNM, то есть все равны между собой :).
Поэтому площадь DKN составляет четверть площади DBG.
Стадартное решение обычно связано с тем, что площади подобных фигур относятся, как квадраты линейных размеров.