М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Jina9845
Jina9845
15.05.2023 14:07 •  Геометрия

Шестиугольник abcdef вписан в окружность докажите что a+c+e=360 градусов

👇
Ответ:
manenkova1997
manenkova1997
15.05.2023
В многоугольнике с четным количеством углов и вписанным в окружность, сумма противоположных углов равна.
4,6(91 оценок)
Открыть все ответы
Ответ:
Danil244564
Danil244564
15.05.2023

– катеты; AB=c – гипотенуза.

Также в прямоугольном треугольнике сумма острых углов равна : .

Для прямоугольного треугольника также верна теорема Пифагора: .

Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.

Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника

Определение

Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе.

, .

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

, .

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.

, .

Связь катетов и гипотенузы, двух катетов через тригонометрические функции угла

С введённых понятий можно находить катеты или гипотенузу.

Например, из формулы: . Аналогично: .

Также можно получить формулу для связи длин двух катетов: .

Связь синуса и косинуса двух острых углов прямоугольного треугольника

При решении задач очень важно знать соотношения между синусом, косинусом и тангенсом острого угла прямоугольного треугольника.

Рассмотрим следующие две формулы: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Формула, связывающая тангенс с синусом и косинусом

Докажем теперь важную формулу, связывающую тангенс с синусом и косинусом:

Доказательство независимости значения тригонометрических функций от размеров треугольника

Доказательство

Запишем определение синуса и косинуса острого угла прямоугольного треугольника: , . Тогда: . Доказано.

Аналогично: .

Рассмотрим следующую важную задачу.

Задача

Даны прямоугольные треугольники . Кроме того, .

Доказать:.

Доказательство

(так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .

Отсюда получаем: .

.

.

Доказано.

Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.

Основное тригонометрическое тождество

Сформулируем и докажем одну из важнейших теорем, связывающих синус и косинус острого угла прямоугольного треугольника, – основное тригонометрическое тождество.

Основное тригонометрическое тождество: .

Примечание:

Доказательство

, тогда:  (при доказательстве мы пользовались теоремой Пифагора: ).

Доказано.

Рассмотрим пример, иллюстрирующий связь тригонометрических функций.

Решение примера

Дано:  – прямоугольный (), .

Найти:

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

ответ: .

На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Список литературы

Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.

Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фестиваль педагогических идей "Открытый урок" (Источник).

Xvatit.com (Источник).

Egesdam.ru (Источник).

Домашнее задание

№ 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .

Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур

4,6(89 оценок)
Ответ:
alona7773
alona7773
15.05.2023
Основание пирамиды - ромб. Большая диагональ d, острый угол =60°. Все двугранные углы при основании равны 60°. Найти площадь полной поверхности пирамиды. 
Двугранные углы при основании равны 60°, значит,  проекции апофем равны между собой и равны радиусу вписанной в данный ромб окружности. 
Сделаем рисунок пирамиды SABCD и отдельно ее основания АВСD.
АС=d
АО=d/2
Сумма углов при стороне параллелограмма равна 180°⇒
∠ABC=180°-60°=120°
∠ABO=120°:2=60°
сторона ромба АВ=АО:sin 60°=d/√3
∠ОАВ=ОАD=60°:2=30°
ОН=АО:2=d/4 (противолежит углу 30°)
Апофема SH=OH/cos∠OHS= (d/4):cos60°=(d/4):1/2=d/2=0,5d
Площадь полной поверхности пирамиды равна сумме  площадей ее четырех боковых граней и основания. 
S ASD=AD*SH:2=[0,5d*d/√3];2=0,25d²/√3
Площадь боковой поверхности 
Ѕбок=4*0,25d²/√3=d²/√3
Площадь основания=площадь ромба
Треугольник АВD- равносторонний.
Высота ромба ВМ=АО=d/2
S ABCD=AD*ВМ=(d²/√3):2
Sполн==(d²/√3):2+d²/√3=3d²/2√3=(d²√3):2

Основа піраміди ромб, більша діагональ d, гострий кут 60°. всі двогранні кути при основі дорівнюють
4,6(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ