Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
Рассмотрим треугольник ФВО. Мы знаем, что ВФ=ФО, значит, он равнобедренный. Угол АВС, который здесь ФВО, равен 50-и градусам и является углом при основани, а так как углы при основании в равнобедр. треугольнике равны, то уго ВОФ тоже равен 50-и градусам. Сумма углов треугольника равна 180-и градусам, поэтому угол ВФО равен 180 - (50+50) = 80 градусам. Замечаем, что угол ВФО смежный с углом АФО, значит угол АФО равен 180 - 80 = 100 градусов по свойству смежных углов. Ну, можно было и попроще: угол АФО является внешним углов треугольника ФВО и равен сумме двух углов этого треугольника, не смежных с ним, то есть ФВО и ВОФ, а их сумма равна 100 градусам