А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам. Рассмотрим один из получившихся при пересечении диагоналей ромба прямоугольных треугольника. Его катеты - это половинки диагоналей, а гипотенуза - сторона ромба. Пусть меньший катет равен х см, тогда больший равен (х+4) см (если одна из диагоналей на 8 см больше другой, то половинка этой диагонали больше на 4 см). Применим к этому прямоугольному треугольнику теорему Пифагора: х^2+(x+4)^2=20^2 х^2+ х^2+8x+16=400 2 х^2+8x-384=0 х^2+ 4x-192=0 D=4^2-4*(-192)=16+768=784: корень(D)=28 x1=(-4-28)/(2*1)=-32/2=-16 - не подходит по условию задачи x2=(-4+28)/(2*1)=24/2=12 Значит, меньший катет прямоугольного треугольника равен 12 см, а второй - 16 см. Следовательно, диагонали ромба будут равны 24 см и 32 см. Площадь ромба равна половине произведения его диагоналей, т. е. 0,5*24*32=384 (кв. см)
С(7;-5)
Объяснение:
Хс=Хд+(Хд-Ха)=3+(3-(-1))=7
Ус=Уд+(Уд-Уа)=1+(1-7)= -5