1 доказываешь равенство треугольников AMD и CNB, например (по первому признаку равенства), отсюда равенство МD и NB. из того же равенства (треугольников) получаешь равные углы из которых следует параллельность этих сторон. По признаку парал. получаешь доказательство )) (2 стороны равны и параллельны) Если был доказан признак, что если у выпуклого 4угольника диагонали пересекаются посередине, то это параллелограмм - то еще проще ) одна диагональ уже есть. И она пересекается с другой в своей середине и в ее середине (очень просто доказывается)
Из теоремы (сумма смежныхьуглов равна 180°) следует, что если два угла равны, то смежные с ними углы равны. Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны. Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.
1 доказываешь равенство треугольников AMD и CNB, например (по первому признаку равенства), отсюда равенство МD и NB. из того же равенства (треугольников) получаешь равные углы из которых следует параллельность этих сторон. По признаку парал. получаешь доказательство )) (2 стороны равны и параллельны)
Если был доказан признак, что если у выпуклого 4угольника диагонали пересекаются посередине, то это параллелограмм - то еще проще ) одна диагональ уже есть. И она пересекается с другой в своей середине и в ее середине (очень просто доказывается)