Пусть дан равнобедренный треугольник АВС. По условию задачи, один из внешних углов равен 32 градуса. Тогда Внутренний угол С как смежный угол равен 180-32=148(градусов). Так как в равнобедренном треугольнике углы при основании равны, а сумма внутренни углов равна 180 градусов, то углы А и В равны (180-148)/2=16(градусов).
Рассмотрим треугольник ACD. Так как угол С - тупой, то высота, проведённая из вершины при основании (допустим АD),лежит вне треугольника. В полученном треугольнике АСD угол D прямой, угол ACD=32 градуса. Тогда угол СAD равен 180-(90+32)=58 градусов.Значит искомый угол ACD равен 58+16=74 градуса.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).