Дано: Δ АВС, АВ=10, АА₁=9, ВВ₁=12.
Найти S(АВС), СС₁.
Применяем теорему: медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины.
Следовательно, АО=6, ОА₁=3; ВО=8, ОВ₁=4.
Рассмотрим Δ АВО - прямоугольный, "египетский", (т.к. стороны кратны 3, 4 и 5).
S(ABO)=1\2 * 6 * 8=24 (ед²)
S(ABO)=S(BOC)=S(AOC) (по свойству медиан треугольника)
S(ABC)=24*3=72 (ед²)
Δ АОВ - прямоугольный, ОС₁ - медиана, ОС₁=1\2 АВ (по свойству медианы прямоугольного треугольника); ОС₁=5.
ОС₁=5*2=10; СС₁=5+10=15 (ед)
Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3.
ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона).
Полупериметр р =(10+8+6)/2 = 24/2 = 12.
S = √(12*2*4*6) = √(24*24) = 24.
Площадь треугольника АВО составляет 1/3 треугольника АВС.
Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный.
Значит, медианы пересекаются под прямым углом.
Отсюда находим стороны:
ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73.
АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52.
Теперь можно найти длину медианы СС1 по формуле:
mc = (1/2)*√(2a² + 2b² - c²).
СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.