Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
См. рисунки 1) если это параллелогр., тогда уголА=углу С и угол В=углу D рассмотрим треугольник АВК. Он прямоугольный (по условию). АВ=2ВК есть такое св-во- если у прямоугольного треугольника катет равен половине гипотенузы, то он лежит против угла 30 градусов. т.е. угол А (как и С)=30 тогда В=180-30=150 т.е. D=50 2) рассмотрим красные треуг. ВО=ОD, AO=OC (по условию) улы ВОС и АОД равны как вертикальные. значит треуг. равны, соотв. стороны ВС и АД равны. у зеленых треуг. аналогично. А если у четырехугольника противоположные стороны попарно равны, то такой 4-уг явл. параллелограммом (св-во)
2=107
3=107
4=180-107=73
Объяснение: