М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
orehovas
orehovas
16.12.2021 14:57 •  Геометрия

найдите сторону треугольника, лежащую против угла в 30°, если прилежащие к нему стороны равны 2 и √3

👇
Открыть все ответы
Ответ:
VladislavAkinshin
VladislavAkinshin
16.12.2021
По условию Δ равнобедренный. две его стороны обозначим а, угол между ними =180°-30° *2=120°
SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2)
64√3=(1/4)a²√3, a²=256, a=16
основание Δ обозначим с.
рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания.
 cos 30°=(c/2)/a
√3/2=(c/2)/16, √3/2=c/32, c=16√3
ответ: стороны треугольника 16 см, 16см, 16√3 см


рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2.
пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы)
по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3
SΔ=(1/2)*c*h
64√3=(1/2)*2x√3*x
64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см
ответ: 16,16 и 16√3
4,5(32 оценок)
Ответ:
Аляска56
Аляска56
16.12.2021

68. По данным на рисунке найдите площадь \triangle CKB.

- - -Дано :

ΔСКВ - прямоугольный (∠С = 90°).

СК - высота (СК⊥АВ).

АК = 4, КВ = 16.

Найти :S_{\triangle CKB} ~=~ ?Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, CK = \sqrt{AK*KB} = \sqrt{4*16} = \sqrt{2*2*4*4} = 2*4 = 8.

Площадь прямоугольного треугольника равна половине произведения его катетов.

Следовательно, S_{\triangle CKB}=\frac{CK*KB}{2} =\frac{8*16}{2} =\frac{128}{2} =64 ед².

ответ :

64 ед².

- - -

70. ABCD - прямоугольник. Найдите S_{ABCD}.

- - -Дано :

Четырёхугольник ABCD - прямоугольник.

АС - диагональ.

HD⊥АС.

HD = 6, АН = 9.

Найти :

S_{ABCD}~=~ ?

Решение :Прямоугольник - это параллелограмм, все углы которого прямые.

Следовательно ∠D = 90°.

Рассмотрим ΔACD - прямоугольный.

В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, HD^{2} = AH*HC \Rightarrow HC = \frac{HD^{2} }{AH} = \frac{6^{2} }{9} = \frac{36}{9} =4.

Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.

Следовательно, S_{\triangle ACD}=\frac{AC*HD}{2} =\frac{(AH+HC)*HD}{2} =\frac{(9+4)*6}{2} = 13*3=39 ед².

Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.

Тогда S_{ABCD} = 2*S_{\triangle ACD} = 2*39 ед² = 78 ед².

ответ :

78 ед².

4,5(52 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ