1). На произвольной прямой отложить отрезок, равный стороне АВ. Обозначить на концах отрезка вершины треугольника: точки А и В.
2) Из точки А как из центра раствором циркуля радиусом, равным длине стороны АС, начертить дугу.
3) Из т.В как из центра раствором циркуля радиусом, равным длине стороны ВС, начертить дугу до пересечения с первой дугой.
Точка пересечения дуг – вершина С искомого треугольника. Соединив А и С, В и С, получим треугольник со сторонами заданной длины.
б) Построение срединного перпендикулярна стандартное.
Из т.А и т.В как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины АВ так, чтобы они пересеклись по обе стороны от АВ (т.К и т. Н).
Точки пересечения К и Н этих полуокружностей соединить.
Соединить А и Н, В и Н. Четырехугольник АКВН - ромб ( стороны равны взятому радиусу). Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
АМ=МВ и КМ перпендикулярно АВ.
КМ - срединный перпендикуляр к стороне АМ.
Точно так же делят отрезок пополам.
ИЗ СВОЙСТВ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА СЛЕДУЕТ
AC^2=AB*AD=4AD^2
AC=2AD
sinB=AC/AB=2AD/4AD=1/2 следовательно угол В=30 гр.
угол А=180-90-<B=90-30=60 град.
на первый вот ответ
Это неравенство иногда называют неравенством Коши в честь французского математика XIX в.Огюста Коши.
Это неравенство иногда называют неравенством Коши в честь французского математика XIX в.Огюста Коши.
Доказательство: Составим разность левой и правой частей:
Получим неотрицательное число, значит, утверждение верно