Дано: DABC - правильная пирамида - AB=BC=AC; DO = 18 см ∠DAO = 45° Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒ OA = OB = OC = R - радиус окружности, описанной около ΔABC ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒ ∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒ ΔAOD - прямоугольный равнобедренный ⇒ AO = DO = 18 см - радиус описанной окружности R ⇒ AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника см² Площадь основания 243√3 см² ≈ 420,9 см²
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
∠DAO = 45°
Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒
OA = OB = OC = R - радиус окружности, описанной около ΔABC
ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒
∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒
ΔAOD - прямоугольный равнобедренный ⇒
AO = DO = 18 см - радиус описанной окружности R ⇒
AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника
Площадь основания 243√3 см² ≈ 420,9 см²