Действительно, речь может идти только о точке D1, так как точка D НЕ ЛЕЖИТ в плоскости угла (дано). Тогда: Расстояние от точки до прямой - это перпендикуляр, опущенный из точки на прямую. По условию эти перпендикуляры (DF и DE) равны. Значит равны и их проекции (D1F и D1E) на плоскость данного нам угла. Это доказывается через равенство прямоугольных треугольников DD1F и DD1E, у которых равны гипотенузы DF и DE и соответствующие катеты - у нас катет общий DD1. Но проекции наших наклонных D1F и D1E в свою очередь являются перпендикулярами к сторонам данного угла. Значит основание перпендикуляра DD1 (точка D1) равноудалена от сторон угла и, следовательно, лежит на биссектрисе этого угла. Что и требовалось доказать.
1. Пусть больший угол равен х°,тогда: 1угол - х° 2угол - х°-50° Всего - 180° Уравнение: х+х-50=180 2х=180+50 2х=230 х=115(°)-больший угол 115°-50=85°-меньший угол ответ: 115° и 85° 2. При пересечении двух параллельных прямых секущей накрест Лежащие углы равны, значит: 230°:2=115°-один из внутренних накрест лежащих углов С ними ещё 2 вертикальные углы, они тоже равны 115°. Остальные 4 угла - смежные с остальными, они равны 85° ответ: 115°,85°,115°,85°,115°,85°,115°,85°. 3. Рассмотрим треуг-ик АВД: АД-высота,значит АД перпендикулярен ВС, а это значит, что треуг-ик АВД-прямоугольный. Сумма острых углов прямоуг.треуг-ка равна 90° => угол А=90°-60°=30°. ВД=2см и ВД=1/2АВ(т.к. лежит против угла в 30°) => АВ=4см Рассмотрим треуг-ик АВС: Сумма острых углов прямоуг.треуг-ка равна 90°,значит угол С=90°-60°=30°. АВ=4см и АВ=1/2ВС(т.к. лежит против угла в 30°) => ВС=8см. ВС=ВД+ДС и ВС=8см и ВД=2см => 2см+ДС=8см ДС=6см ответ: 6см
Расстояние от точки до прямой - это перпендикуляр, опущенный из точки на прямую. По условию эти перпендикуляры (DF и DE) равны. Значит равны и их проекции (D1F и D1E) на плоскость данного нам угла. Это доказывается через равенство прямоугольных треугольников DD1F и DD1E, у которых равны гипотенузы DF и DE и соответствующие катеты - у нас катет общий DD1. Но проекции наших наклонных D1F и D1E в свою очередь являются перпендикулярами к сторонам данного угла. Значит основание перпендикуляра DD1 (точка D1) равноудалена от сторон угла и,
следовательно, лежит на биссектрисе этого угла. Что и требовалось доказать.